The Snapdragon 765 SoC: Improved Premium With 5G

Alongside the main Snapdragon 865 star-SoC today, Qualcomm is also announcing a new addition to the 700-series line-up. To be exact, we’re seeing two new additions, the Snapdragon 765 and Snapdragon 765G. The two chips are of the same silicon, with a slight difference in performance binning, and are both successors to the Snapdragon 730.

Qualcomm Snapdragon Premium SoCs 2019-2020
SoC

Snapdragon 765
Snapdragon 765G

Snapdragon 730
CPU 1x Kryo 475 Prime (CA76)
@ 2.3GHz (non-G)
@ 2.4GHz (765G)
1x Kryo 475 Gold (CA76)
@ 2.2GHz
6x Kryo 475 Silver (CA55)
@ 1.8GHz
2x Kryo 470 Gold (CA76)
@ 2.2GHz
 

6x Kryo 470 Silver (CA55)
@ 1.8GHz
GPU Adreno 620
+20% perf (non-G)
+38% perf (765G)
Adreno 618
DSP / NPU Hexagon 696
HVX + Tensor

5.4TOPS AI
(Total CPU+GPU+HVX+Tensor)
Hexagon 688
HVX + Tensor
Memory
Controller
2x 16-bit CH

@ 2133MHz LPDDR4X / 17.0GB/s
2x 16-bit CH

@ 1866MHz LPDDR4X 14.9GB/s
ISP/Camera Dual 14-bit Spectra 355 ISP

1x 192MP or 36MP with ZSL
or
2x 22MP with ZSL
Dual Spectra 350 ISP

1x 36MP with ZSL
or
2x 22MP with ZSL
Encode/
Decode
2160p30, 1080p120
H.264 & H.265

10-bit HDR pipelines
Integrated Modem Snapdragon X52 Integrated

(LTE Category 24/22)
DL = 1200 Mbps
4x20MHz CA, 256-QAM
UL = 210 Mbps
2x20MHz CA, 256-QAM

(5G NR Sub-6 4x4 100MHz
+ mmWave 2x2 400MHz)
DL = 3700 Mbps
UL = 1600 Mbps
Snapdragon X15 LTE

(Category 15/13)
DL = 800Mbps
3x20MHz CA, 256-QAM
UL = 150Mbps
2x20MHz CA, 64-QAM
Mfc. Process Samsung
7nm EUV (7LPP)
Samsung
8nm (8LPP)

In terms of architecture, the new chips don’t differ as drastically to its predecessors as the flagship S865. On the CPU side, we’ve seen a slight change in the CPU layout, with the big cores now coming in a 1+1 Prime and Gold configuration, rather than an equal pairing as with the Snapdragon 730. We didn’t get more detailed info on the setup, but it’s likely that the new Prime core has larger L2 caches than the secondary big cores, if Qualcomm’s implementation here is similar to the larger flagship siblings. Clock frequencies on the Prime core have increased to 2.3GHz for the regular Snapdragon 765, whilst it goes up to 2.4GHz on the S765G. The secondary big core remains at 2.2GHz.

The big disappointment here is that these are still Cortex-A76 based CPU cores, so Qualcomm hasn’t actually updated the microarchitecture designs of the CPUs. In this regard, the new chip actually seems slightly inferior to the Exynos 980 with A77 cores, which targets the same device segment.

We continue to see 6x Cortex A55 cores at 1.8GHz alongside the big cores.

Qualcomm’s First Integrated 5G Modem

The biggest change in the SoC is the fact that this is Qualcomm’s first chipset to integrate a 5G modem. In terms of modem architecture, it’s said that the block is identical in functionality to the X55 external modem, just that it supports lesser bandwidth. 4G LTE speeds reach up to 1200Mbps download and 210Mbps upload, and 5G speeds aggregate over sub-6 as well as mmWave peak at 3700Mbps down and 1600Mbps up.

Qualcomm was keen to point out that unlike other vendors, they’re not skimping on mmWave connectivity at this category, although I do wonder if vendors will actually integrate mmWave modules on the devices with the SoC as it’s essentially a high-end feature on a more price-sensitive platform.

Also very interesting is the new SoC’s manufacturing process – it’s made by Samsung on their new 7nm EUV 7LPP node, meaning the premium SoC technically has a more advanced process technology than the flagship Snapdragon 865, although in practice this doesn’t necessarily mean it’s actually better in terms of characteristics.

The first Snapdragon 765(G) devices are expected to be released in the first quarter of 2020.

The Snapdragon 865 & 765: First Impressions

Overall, today’s launch was very exciting and hopefully we’ve been able to present to you with some exclusive clarifications on the new SoC platforms.

Qualcomm’s execution in recent years have been pretty much excellent, and flagship devices powered by Snapdragon SoCs have been always extremely well-rounded. Naturally we do wish the Android SoC vendors would put the pedal to the metal in terms of raw performance and efficiency and catch up with Apple’s designs, but when it comes to all other aspects of SoC design Qualcomm is in pretty much in a leadership role. That’s not to say the performance improvements of the new generation is disappointing, I’m expecting the new CPU cores to shine and Qualcomm has promises very healthy improvements in a generation where there have only been minor process node improvements.

Two big takeaways from today’s launch were camera and 5G. The camera capabilities of the Snapdragon 865 means that next year we’ll see some exciting new designs and a leap forward in camera capture experiences.

The Snapdragon 865 and 765 both supporting 5G to the fullest extend also means that the SoCs represent the foundation for 5G devices in 2020, and we expect vendors to 5G in their full line-up, with maybe only a few exceptions at the low and mid-low-range. I was quite doubtful about the value in buying X50 based 5G devices this year as they did have some crucial feature compromises, I don’t have the same qualms about the new X55 and X52 based platforms next year, and it’s likely the generation to get on board for 5G.

I’m excited to get my hands on the first Snapdragon 865 devices early next year, and hopefully we’ll be able to get more details on the platform in the next weeks and months to come.

Immense Camera Upgrades: 15 TOPs AI, 200 MPix Sensors, 8K30 Recording
Comments Locked

91 Comments

View All Comments

  • Alistair - Wednesday, December 4, 2019 - link

    To be a bit more clear, the touch responsiveness and screen is better with my android, and the text message integration with windows is amazing (bring imessage to windows and maybe I'll get another iphone).
  • Raqia - Wednesday, December 4, 2019 - link

    Yeah, there's obvious appeal to the seamless consumer electronics that Apple produces. They have an easier job than the likes of Qualcomm with its dozens of partners and on average end up with better results as well. I'm very impressed with their latest iPad Pro myself.

    However, their homogeneity poses great risks to consumers and industry competition in the long run. They do not allow competing store fronts on their platform (which they should be forced to open with licensing on FRAND terms) and charge an exorbitant 30% fee to software writers.
    Their much touted security may only locally obfuscate severe bugs in their very large ecosystem:

    https://www.vice.com/en_us/article/pajkkz/its-almo...

    Their treatment of suppliers is downright abusive, cheating business after business such as Dialog, Imagination, and Qualcomm out of their IP and stifling the ability of the industry to support competing products. There are real perils of vertical integration:

    https://www.eetimes.com/document.asp?doc_id=133200...

    I hope Apple continues to keep the industry on its toes with its excellent execution, but I also hope it opens its platform, by regulatory force if necessary.
  • generalako - Thursday, December 5, 2019 - link

    That's not a fair comparison, seeing as the 4 XL not only has an underclocked SD855, but also UFS 2.1 and not the best software performance optimization. Compare it to a OnePlus 7(T) Pro, which has much faster storage (UFS 3.0) performance, larger and better RAM management and proper performance optimization in both interface and in relation to the CPU, and the difference you claim to see will vanish. Just do yourself the favor and look at comparison videos on YouTube.

    If software smoothness is what's important to you, I get your grievances. But then again, 90Hz makes up a lot of that (and more), and OxygenOS is probably the most stable and smooth third-party interface on Android after Pixel UI.
  • name99 - Thursday, December 5, 2019 - link

    "the snappiness of iPhones doesn't have especially much to do with peak single threaded integer throughput so much as IO and memory performance coupled with tight integration of iOS with hardware."

    People keep claiming this. But that SAME tight OS integration has existed on every iPhone since at least the A6 and A7...
    Even so, every year I can tell feel the increased fluidity of the new phones. Even at iPhone 6 people were claiming that phones were fast enough, that they never dropped frames. And yet each successive 20% to 30% annual boost is notable in feeling that much smoother, especially as ever more of the UI is built around swiping in different directions rather than tapping.

    Are we NOW maxed out? Certainly when I use my A12 and A12X based phone+iPad I don't NOW feel any delays in the UI that bug me. (Every year it's got better; with iPhone 6 it was at the point of "thank god I don't have to wait", since then it has been "yes, definitely smoother, no stuttering, feels right").
    And you could say, at this point, OK, good enough, we don't need to do more. Certainly plenty of people seem to think that way (many on the Android side, at least some on the Apple side). But there's is still so much more phones COULD do. Where's my real-time translation (text and speech)? Where's my assistant fixing my typos at the sentence and paragraph level, rather than at the basic (and not THAT accurate) word-by-word level?
    If you change the question from "is my phone now fast enough" to "what would I like my phone to do, to hell with practicality or current software technology" you look at CPU design in a very different way.

    Apple is certainly on that second track. ARM and QC I think also are for the past few years, though it's not an especially natural place for them, and I wouldn't be surprised if the inside voices pushing for excellence are in a fragile position, liable to be ousted if there's a single false step...
  • Raqia - Thursday, December 5, 2019 - link

    CPUs aren't responsible for much of the heavy lifting in the tasks you're describing like smooth UX scrolling or voice translation. They handle control general purpose program flow which is memory intensive or dynamic recompilation which can bottleneck in some cases like browser execution of Javascript or during just plain benchmarking scenarios.

    The small cores, larger caches, better buses / IO, GPU compositing functions, and the new AI units are much more responsible for typical user experience than peak CPU single threaded performance, and indeed Apple excels here too but not to the degree they do over Android SoCs in the single threaded metric. Apple is riding high on the positive wave of press and user perception over its excellent CPU performance though due to its being one of the only components on an SoC that's easy to systematically benchmark and publicize.
  • Sharma_Ji - Wednesday, December 4, 2019 - link

    If you get time some someday, use some snappy android phones from likes of 1+, Asus, etc.
  • Ironchef3500 - Thursday, December 5, 2019 - link

    I am starting to feel the same way..
  • generalako - Thursday, December 5, 2019 - link

    That gap is NOT widening. It is closing. SD855 essentially cut the gap by a 40%, to its lowest point in many years. Even SD865, with A77, is making sure that gap has not widened (in fact, slightly decreased). So your comment is false.

    Where the gap has been widening, is in Apple's efficiency cores and in GPU performance, however. Here, ARM and Qualcomm have a lot of work to do.
  • Kabm - Wednesday, December 4, 2019 - link

    Now there are a market for gamer chip. But before QC don't have room as Apple as they have integrated 4G modem. The 865 is the first to have the same room as Apple
  • ksec - Wednesday, December 4, 2019 - link

    While Geekbench is not a perfect benchmark ( No Benchmark is ever perfect ), it is a good tool to estimate performance.

    The best Single Core Performance of 855 is around ˜710, so a 25% increase would be around 900. an iPhone 8 does 900+, iPhone XS does 1100, and iPhone 11 does 1300.

    Of coz MultiCore would blow past iPhone X or even XS. But I dont care much about MultiCore Performance. You are still fundamentally limited by Single Core performance.

    And of course, your System Performance ( Not your CPU performance ) depends a lot on Software, NAND Speed, Controller, Memory etc.

Log in

Don't have an account? Sign up now