We won't go too deep into Krait's CPU architecture, because we've already done so in an earlier piece. What we can provide however is a quick recap. Architecturally Krait isn't a design of tradeoffs, rather it's a significant step forward along almost all vectors. Each core can fetch, decode and execute more instructions in parallel than its predecessor (Scorpion, Snapdragon S1/S2/S3).

Qualcomm Architecture Comparison
Scorpion Krait
Pipeline Depth 10 stages 11 stages
Decode 2-wide 3-wide
Issue Width 3-wide? 4-wide
Execution Ports 3 7
L2 Cache (dual-core) 512KB 1MB
Core Configurations 1, 2 1, 2, 4

Even if you're not comparing to Qualcomm's previous architecture, Krait maintains the same low level advantage over any other ARM Cortex A9 based design (NVIDIA Tegra 2/3, TI OMAP 4, Apple A5). Clock speeds are up with only a small increase in pipeline depth. The combination of these two factors alone should result in significant performance improvements for even single threaded applications. If you want to abstract by one more level: Krait will be faster regardless of application, regardless of usage model. You're looking at a generational gap in architecture here, not simply a clock bump.

Architecture Comparison
ARM11 ARM Cortex A8 ARM Cortex A9 Qualcomm Scorpion Qualcomm Krait
Decode single-issue 2-wide 2-wide 2-wide 3-wide
Pipeline Depth 8 stages 13 stages 8 stages 10 stages 11 stages
Out of Order Execution N N Y Partial Y
FPU VFP11 (pipelined) VFPv3 (not-pipelined) Optional VFPv3 (pipelined) VFPv3 (pipelined) VFPv4 (pipelined)
NEON N/A Y (64-bit wide) Optional MPE (64-bit wide) Y (128-bit wide) Y (128-bit wide)
Process Technology 90nm 65nm/45nm 40nm 40nm 28nm
Typical Clock Speeds 412MHz 600MHz/1GHz 1.2GHz 1GHz 1.5GHz

The memory interface of the chip has been improved tremendously. At a high level, the MSM8960 is Qualcomm's first SoC to feature PoP support for two LPDDR2 memory channels. We suspect there are lower level improvements to the memory interface as well however we don't have more details from Qualcomm, not to mention the current state of memory latency/bandwidth testing on Android is pretty abysmal.

Quantifying the Krait performance advantage requires a mixture of synthetic and application level tests. We'll start with Linpack, a Java port of the classic memory bandwidth/FPU test:

Linpack - Single-threaded

Linpack - Multi-threaded

Occasionally we'll see performance numbers that just make us laugh at their absurdity. Krait's Linpack performance is no exception. The performance advantage here is insane. The MSM8960 is able to deliver more than twice the performance of any currently shipping SoC. The gains are likely due in no small part to improvements in Krait's cache/memory controller. Krait can also issue multi-issue FP instructions, A9 class architectures can apparenty only dual-issue integer instructions.

Moving on we have our standard JavaScript benchmarks: Sunspider and Browsermark. Both of these tests show significant performance improvements, although understandably not by the margins we saw above in Linpack:

SunSpider Javascript Benchmark 0.9.1 - Stock Browser

BrowserMark

Krait and the MSM8960 are 20 - 35% faster than the dual-core Cortex A9s used in Samsung's Galaxy Nexus. For a look at how overall web page loading is impacted we loaded AnandTech.com three times and averaged the results. We presented results with the browser cache cleared after each run as well as results after all assets were cached:

AnandTech.com Page Loading Comparison (Stock ICS Browser)
Browser Cache Cleared Cache In Use
Qualcomm MDP MSM8960 (Krait) 5.5 seconds 3.0 seconds
Samsung Galaxy Nexus (ARM Cortex A9) 5.8 seconds 4.4 seconds

There's hardly any advantage when you're network bound, which is to be expected. However whenever the device can pull assets from a local cache (something that is quite common as images, CSS and even many page elements remain static between loads) the advantage grows considerably. Here we're seeing a 46% advantage from Krait over the Cortex A9 in the Galaxy Nexus.

We turn to Qualcomm's own Vellamo as a system/CPU/browser performance test:

Vellamo Overall Score

Again, we're showing a huge performance advantage here thanks to Krait. Seeing as how Vellamo is a Qualcomm benchmark don't get too attached to the advantage here, but it does echo some of what we've seen earlier.

Finally we have Rightware's Basemark OS 1.1 RC which is fast becomming an impressively polished system benchmark, one which will hopefully eventually take the place of the likes of Quadrant.

Basemark OS - System
HTC Rezound Galaxy Nexus MDP MSM8960
System Overall Score 658 538 907
Simple Java 1 298 loops/s 210 loops/s 375 loops/s
Simple Java 2 7.28 loops/s 8.61 loops/s 10.8 loops/s
SMP Test 35.3 loops/s 49.2 loops/s 64.4 loops/s
100K File (eMMC->SD) 6.49 mB/s 9.52 mB/s 8.64 mB/s
100K File (SD->eMMC) 33.0 mB/s 17.8 mB/s 39.8 mB/s
100K File (eMMC->eMMC) 37.8 mB/s 34.5 mB/s 48.9 mB/s
100K File (SD->SD) 8.47 mB/s 8.30 mB/s 12.7 mB/s
Database Operation 10.0 ops/s 5.73 ops/s 19.4 ops/s
Zip Compression 0.509 s 0.848 s 0.561 s
Zip Decompression 0.097 s 0.206 s 0.073 s

On the CPU centric tests Basemark OS is showing anywhere from a 20% - 80% increase in performance over the 1.5 GHz APQ8060 based HTC Rezound. IO performance is also tangibly improved although that could be a function of NAND performance rather than the SoC specifically.

These results as a whole simply quantify what we've felt during our use of the MSM8960 MDP: this is the absolute smoothest we've ever seen Ice Cream Sandwich run.

Dual Core Krait in an MDP - the MDP8960 GPU Performance - Adreno 225
Comments Locked

86 Comments

View All Comments

  • nbenedetto1998 - Tuesday, January 1, 2013 - link

    Krait is a15 just built on the a9 nm process which is 32 nm I believe. The real A15 will be built on a 28nm process.
  • sjael - Tuesday, February 21, 2012 - link

    Would be great to put some Transformer Prime numbers next to it. You know, just for kicks...
  • infra_red_dude - Tuesday, February 21, 2012 - link

    Some numbers where it beats Tegra3 everywhere (almost):

    http://www.pcmag.com/article2/0,2817,2400409,00.as...
  • Loki726 - Tuesday, February 21, 2012 - link

    I'd like to see a clock-for-clock comparison. Tegra 3's A9 is at 1.3ghz and Krait is at 1.5ghz here. I'd be interested to see what happens when A9 gets scaled down to 28nm, and whether or not Krait will still have an advantage.
  • Wishmaster89 - Wednesday, February 22, 2012 - link

    And what would you need 1.5Hhz A9 for at 28nm? A15 is much better than any A9, and will come at lower process nodes.
    Besides, you can see that 1.2Ghz Exynos is much slower than 1.5Ghz Krait so I don't think higher clock will change it.
  • LordConrad - Tuesday, February 21, 2012 - link

    I want one of these in my next phone. My HTC Thunderbolt works great, but it's getting a bit dated.
  • TedKord - Tuesday, February 21, 2012 - link

    Being an Anandtech reader, you've gotta be rooted and have a custom rom slapped on. What do you have flashed on yours?
  • LordConrad - Wednesday, February 22, 2012 - link

    Right now I'm using the BAMF Forever ROM, nice features and very stable. I'll stick with it until I find something better (or get a new phone).
  • ShieTar - Tuesday, February 21, 2012 - link

    "At a lower resolution Apple's A5 is unable to outperform the Adreno 225 here."

    Actually, 960x640 and 1024x600 both have exactly the same number of total pixels.

    Not that it changes the conclussion.
  • lowlymarine - Tuesday, February 21, 2012 - link

    "At a lower resolution Apple's A5 is unable to outperform the Adreno 225 here."

    Perhaps I'm misreading this line, but aren't 1024x600 and 960x640 actually exactly the same resolution in different aspect ratios?

Log in

Don't have an account? Sign up now