AnandTech Storage Bench - Heavy

Our Heavy storage benchmark is proportionally more write-heavy than The Destroyer, but much shorter overall. The total writes in the Heavy test aren't enough to fill the drive, so performance never drops down to steady state. This test is far more representative of a power user's day to day usage, and is heavily influenced by the drive's peak performance. The Heavy workload test details can be found here. This test is run twice, once on a freshly erased drive and once after filling the drive with sequential writes.

ATSB - Heavy (Data Rate)

As with The Destroyer, the average data rate of the Intel Optane SSD 800p puts it near the top of the rankings, but behind the fastest flash-based SSDs and the Optane 900p. Intel's VROC again adds overhead that isn't worthwhile without the high queue depths of synthetic benchmarks.

ATSB - Heavy (Average Latency)ATSB - Heavy (99th Percentile Latency)

The average and 99th percentile latencies of the Optane SSD 800p on the Heavy test are better than any of the low-end NVMe SSDs, but it is only in RAID that the latency drops down to the level of the best flash-based SSDs and the 900p.

ATSB - Heavy (Average Read Latency)ATSB - Heavy (Average Write Latency)

The average read latency of the Optane SSD 800p ranks second behind the 900p. VROC adds enough overhead that the RAID configurations end up having slightly higher average read latencies than the Samsung 960 PRO. For the average write latencies, VROC is far more useful, and helps the 800p make up for the lack of a write cache.

ATSB - Heavy (99th Percentile Read Latency)ATSB - Heavy (99th Percentile Write Latency)

The 99th percentile read and write latencies of the 800p RAID configurations are on par with the 900p, but the individual drives have slightly worse QoS than the Samsung 960 PRO.

ATSB - Heavy (Power)

The 800p again leads in energy usage thanks to its high overall performance without the high baseline power consumption of the 900p. The budget NVMe SSDs all use at least twice as much energy over the course of the test, and the Samsung 960 PRO is closer to the budget drives than to the 800p.

AnandTech Storage Bench - The Destroyer AnandTech Storage Bench - Light
Comments Locked

116 Comments

View All Comments

  • eddman - Monday, March 12, 2018 - link

    90? It is stated as 20nm in that table up there.
  • Nottheface - Monday, March 12, 2018 - link

    I was told these are not related in a previous article's posts: https://www.anandtech.com/comments/12136/the-intel...
  • Ewitte12 - Monday, April 30, 2018 - link

    They had difficulty keeping the enterprise drives in stock.

    The 2X quote was for RAM. low queue depth obliterates NAND. Most other speeds are on par with NAND (with sustained a bit behind) but this is direct access to the storage. Most NAND drives have sophisticated RAM caching it can be writing way after the bar disappears off your screen.

    The biggest issue with pricing. Optane has high early adopter fees (which come with a few extra bugs usually). Also anything under the 900p is kinda pointless. 3.0x2 and low capacities??? Not worth it.
  • Gothmoth - Friday, March 9, 2018 - link

    intel hyped this like crazy and after reading the paper i was hyped too.

    but this seems like just another way for intel to push it´s stock market value with redicolous claims.
  • hescominsoon - Friday, March 9, 2018 - link

    Semiaccurate had 3d x-point pegged from the beginning:

    https://www.semiaccurate.com/?s=point
  • Ashinjuka - Saturday, March 10, 2018 - link

    Optanic.
  • DanNeely - Thursday, March 8, 2018 - link

    Could we see results from Optane as cache + budget SSD and Optane as cache + high end SSD?

    I'm not sure it'd be worthwhile with a fast SSD since it only beats them in a subset of benches, but it looks capable of giving a decent boost to budget flash. Cost effectiveness vs just buying better flash'd be the harder question.
  • iter - Thursday, March 8, 2018 - link

    Cache only makes sense for a HDD. It would make no difference combining it with an SSD. Not in terms of real world application performance anyway.

    Spending on 118 gb of optane is pointless when you can get a decent 512 gb ssd for the same money. Over 200% higher the capacity at 99% of the performance. It is a no brainer. Intel will have to resort to bribing OEMs once again if they are to score any design wins.
  • patrickjp93 - Saturday, March 10, 2018 - link

    Uh, think again on big data where the indices for the databases you're running are way too big to fit in memory. AWS is just one cloud provider making extensive use of Optane, especially in DynamoDB, RDS, Memcached, and Lambda where multi-tenant container environments definitely benefit in rapid spinup thanks to the much lower latency 3DXP.
  • Billy Tallis - Thursday, March 8, 2018 - link

    All of our usual SSD tests are for the drive acting as a secondary drive, but Intel's Optane-specific cache software only supports the boot volume, so it's rather awkward to test.

Log in

Don't have an account? Sign up now